data and AI computer

Fem myter om kunstig intelligens – og hvorfor de ikke holder

Daniel Aunvig

Daniel Aunvig

Specialist Sales Lead

Læsetid, 5 min.

Kunstig intelligens misbruges til aflytning, koster en formue og er svært at arbejde med. Der er mange misforståelser og myter forbundet med anvendelsen af kunstig intelligens. Her er fem myter, vi møder i vores arbejde hos Microsoft Danmark

Denne klumme er et debatindlæg skrevet af Daniel Aunvig, Head of Data & AI, og Niels Grønning, Senior Data & AI specialist, bragt i Computerworld 7. maj 2021

Cloud-baseret kunstig intelligens (AI) er farligt, usikkert og kræver mindst en Ph.d. i statistik at komme i gang med.

Myterne er mange. I vores arbejde med data og AI støder vi på flere udsagn, der ofte er baseret på en unuanceret fremstilling af mulighederne og begrænsningerne ved kunstig intelligens.

Vi konfronteres med myter om teknologien, der for længst er fortid i en hastigt udviklende branche.

”AI er ekstremt dyrt, tidskrævende og forbeholdt de få”. Sådan lyder blot nogle af fortællingerne. Og sådan var det måske også engang.

Men i dag er kunstig intelligens integreret i vores hverdag. Og for især for den yngre generation er det blevet en accepteret del af den daglige interaktion med digitale værktøjer. Derfor vil vi gerne punktere nogle af de myter, som stadig lever i den danske it-branche.

Myte 1: AI er ikke for masserne

AI har sine rødder i computervidenskab samt statistik, hvor opbygningen af algoritmer, der kan forudse og kontinuerligt lære af ny data, gradvist har fundet en generel anvendelse på tværs af industrier og forretningsområder.

Tidligere krævede det stærke kompetencer inden for statistik og var i høj grad begrænset af et mangelfuldt data- og beregningsgrundlag.

Der var groft sagt hverken regnekraft eller data nok til at kunne træne modeller.

Et eksempel på en model, det tidligere ikke ville være muligt at udvikle, er OpenAI’s GPT 3 natural language processing (NLP) model, hvor der er anvendt 175.000.000.000 parametre til at træne modellen.

Udviklingen inden for cloud og den eksponentielle datavækst har haft en afledt effekt i den generelle tilgængelighed af AI modeller i forretningsapplikationer og services.

I dag behøver slutbrugere ikke besidde en dybere matematisk forståelse for at kunne anvende komplekse AI-modeller i deres forretningsprocesser.

Dermed er den umiddelbare barriere for at komme i gang gradvist blevet mindsket.

Mange virksomheder vil opleve, at det blot kræver den rette grad af nysgerrighed samt et solidt samarbejde mellem forretning og IT (Data Engineering, Data Ops og Data Science) at komme i gang med AI.

Myte 2: Cloud analytics er mindre sikkert

Adgangen til skalerbar cloud-infrastruktur har muliggjort udviklingen af avancerede algoritmer, trænet på store datasæt.

Hvad der tidligere krævede store investeringer i egen it-infrastruktur kan nu afvikles i skyen, med lavere omkostninger på hardware og services, der kontinuerligt fornyes.

Nogle virksomheder har dog stadig betænkeligheder ved analytics i clouden, hvilket for mange primært omhandler tredjeparts databehandling.

Øget lovgivning og voksende fokus på sikkerhed og compliance har sikret en gradvis modning af cloud-processer og teknologi, som gør det sikkert at anvende analytics i clouden.

Når det handler om sikkerhed, vil vi gerne stille et retorisk spørgsmål: Hvor er det mest sikkert at opbevare data? På en server i kælderen eller i et public cloud datacenter, hvor der investeres millioner af dollars i digital og fysisk sikkerhed?

Der er ekstrem meget fokus på integritet, sikkerhed og transparens i public cloud – for ikke at tale om global bevågenhed 24/7 – så måske føles det mere sikkert at have data on premise, men i praksis er det yderst tvivlsomt, at det er mere sikkert.

Myte 3: Kunstig intelligens er dyrt og tager lang tid at implementere

Der er de senere år sket en radikal transformation i forhold til de værktøjer og services, der nu er tilgængelige inden for avanceret dataanalyse og AI.

Hvor virksomheder tidligere var nødsaget til at bygge det hele fra bunden i en myriade af open source-værktøjer, er mange AI-algoritmer i dag enten inkluderet i eksisterende forretningsapplikationer eller udstillet via åbne API’er gennem cloud-services.

Virksomheder skal ikke længere kode billede-genkendelsesalgoritmer, men kan nu via produktivitetsplatforme eller cloud services hurtigt tilgå og udnytte modeller, der allerede er trænet til en given use case.

Det har markant sænket pris- og kompetencebarrierer, der tidligere afholdt mange fra at komme i gang med AI.

De lavere omkostninger og reduktionen i tid fra ide til implementering har haft en positiv effekt på den tidligere flaskehals, mange virksomheder oplevede i forhold til pris og kompetencer inden for AI. Der var engang, hvor du skulle købe infrastruktur, købe servere og købe software – og i øvrigt vedligeholde det hele selv.

Det krævede en rigtig stor kapitalinvestering. Men i dag kan du komme i gang med et projekt inden for analyse og AI for cirka 3.000 kr. om måneden

Myte 4: Teknologien er den begrænsende faktor i AI

Myte nummer fire, vi gerne vil afmontere, er, at adgang til teknologi er det vigtigste element i en datadreven virksomhed.

Sådan forholder det sig ikke. Teknologien skal selvfølgelig være til rådighed, men hvis organisationerne virkelig vil skalere, får de brug for de nødvendige kompetencer.

Med andre ord, det er kvalifikationerne i virksomheden, som afgør, hvilken værdi data for alvor skaber.

Myte 5: Kunstig intelligens kan udrette mirakler – alt kan løses med kunstig intelligens

Den transformation, som kunstig intelligens længe har været associeret med, kan ofte blive sammenstillet med den generelle gevinstrealisering, som analytics kan bringe til i virksomheder.

Der kan dog være stor forskel på, hvor man starter sin analytiske rejse.

Og vigtigheden i at anskue problemstillingen, før man låser sig fast på løsningen, er desværre en evne mange overser.

Adgang til et simpelt dashboard med et søjlediagram kan vise sig mere værdiskabende end en kompliceret algoritme.

Afvejningen mellem problemstilling, værktøj samt datagrundlag bør danne grundlag for de første overvejelser, da mange ofte baserer deres løsningsmodel på et utilstrækkeligt datafundament.

Kunstig intelligens er en effektiv teknik, men bør ses i lyset af de mange løsningsmuligheder samt datasæt, som står til rådighed.

Algoritmer kan være superavancerede, men de er aldrig bedre end det datagrundlag, de er udviklet på.

Derfor er arbejdet med tilrettelæggelse og kvalitetssikring af data altafgørende i forhold udviklingen af kvalitetsmodeller, som med høj nøjagtig kan give svar på komplekse problemstillinger.

Free eBook: Accelerate your Data & AI project – From potential to reality

The potential for doing good with technology is massive – we just need to be wide awake while making the critical decisions that can both address some of society’s biggest challenges and drive innovation, talent acquisition, operation efficiency and effectiveness in your organization.

Find flere relaterede artikler pr. branche:

Detailhandel

  • PH Cloud Service løfter hele Sven Bechs 100 års forretning op i skyen

    PH Cloud Service løfter hele Sven Bechs 100 års forretning op i skyen

    PH Cloud Service løfter hele Sven Bechs 100 års forretning op i skyen. Med Business Central får ledelsen bedre overblik over hele virksomheden og medarbejdere får timeregistrering direkte på mobilen integreret med økonomisystemet. Introduktion Sven Bech A/S har over 100 års erfaring indenfor anlægsgartnerbranchen. Det stiller dem i en unikt velegnet position overfor kunder. Men […]

  • Whitepaper: Retail Insights – Harnessing the Power of Data

    Whitepaper: Retail Insights – Harnessing the Power of Data

    Detailbranchen bidrager en betydelig del til bruttonationalproduktet i mange lande, beskæftiger millioner af mennesker og berører næsten alle. Vi har for nylig gennemført en undersøgelse med 100 ledere i detailbranchen for at få indsigt i en særligt omskiftelig tid for branchen. Forhandlere, der fortsætter med at gøre forretninger, som de altid har gjort, uden at […]

Finans og forsikring

Government

Offentlig forvaltning

  • A skyscraper in a city

    Den ‘Gov Pod’-serien: Microsoft i regeringen

    Få mere at vide om, hvordan cloud computing, nye teknologier og blockchain kan forbedre medarbejdernes og borgernes liv.

  • To personer, der bruger Surface Go på et kontor

    Sådan transformerer teknologi offentlige myndigheders arbejde

    Offentlige myndigheder har det ultimative ansvar over for sine borgere. Borgerne er i højere grad afhængige af de serviceydelser, de leverer, end andre institutioner. Uanset om det handler om sundhedspleje, uddannelse, erhvervsliv, veje, tog eller vand, er det afgørende, at offentlige institutioner altid er på forkant med sociale og digitale tendenser. Cloud-baserede teknologier spiller en […]

Produktion

  • 9 måder der gør dit teknisk servicecenter til et profitcenter

    9 måder der gør dit teknisk servicecenter til et profitcenter

    En service, der skaber mere profit end omkostninger er det ultimative mål for enhver organisation. Vi har angivet et par tips nedenfor for at hjælpe dig med at gøre denne drøm til virkelighed. 1. Vid, hvad du har at tilbyde At vide, hvad du har at tilbyde, og hvordan (potentielle) kunder ser din historie, er […]

  • Intelligente valg er med til at spare vand, penge … og skåne miljøet

    Intelligente valg er med til at spare vand, penge … og skåne miljøet

    Grundfos er en global leder i avancerede pumpeløsninger og vandteknologi. Virksomheden bidrager til global bæredygtighed med banebrydende teknologier, der forbedrer livskvaliteten og sundheden for mennesker over hele verden. Som led i disse bestræbelser fortsætter Grundfos med at optimere deres intelligente pumpeløsninger med Microsoft IoT Suite og Microsoft Dynamics 365.

Sundhedspleje

Uddannelse

  • Nyenrode Business Universitet: Forbinde datakilder på en samlet måde

    Nyenrode Business Universitet: Forbinde datakilder på en samlet måde

    Nyenrode Business Universitet var i gang med at integrere et nyt SaaS-baseret finansielt system, da de indså, at processen med at forbinde denne løsning med så mange andre systemer ville være mere kompliceret end forventet. De søgte derefter hjælp hos Wortell, et medlem af Microsoft Partner Network, som foreslog at introducere Azure Unified Pipeline som […]

  • en gruppe mennesker, der sidder ved et bord ved hjælp af en bærbar computer

    Datadrevne marketingbeslutninger skal styrke arbejdet med relationer på Aalborg Universitet

    Med implementeringen af Microsoft Dynamics 365 Marketing ønsker Aalborg Universitet at professionalisere marketingindsatsen overfor alumner, studerende, virksomheder og øvrige samarbejdspartnere. Målet er, at flere datadrevne beslutninger kan øge værdien af både uformelle og formelle relationer og derigennem forbedre universitetets konkurrenceevne yderligere. Aalborg Universitet (AAU) er kendt som et af de universiteter i Danmark, der er […]

Find flere relaterede artikler pr. dossier:

Digital Transformation

Kundecases

Kundehistorier

  • Nyenrode Business Universitet: Forbinde datakilder på en samlet måde

    Nyenrode Business Universitet: Forbinde datakilder på en samlet måde

    Nyenrode Business Universitet var i gang med at integrere et nyt SaaS-baseret finansielt system, da de indså, at processen med at forbinde denne løsning med så mange andre systemer ville være mere kompliceret end forventet. De søgte derefter hjælp hos Wortell, et medlem af Microsoft Partner Network, som foreslog at introducere Azure Unified Pipeline som […]

Sikkerhed og databeskyttelse

  • Microsoft Discover Workshops

    Microsoft Discover Workshops

    Hvilke ønsker og drømme har I for jeres fremtidige arbejdsplads? Til Discover workshops demonstrerer vi, hvordan I kan effektivisere jeres arbejdsgange, styrke jeres samarbejde, optimere jeres sikkerhed, modernisere jeres data platform, migrere jeres infrastruktur til skyen, og meget mere. Bevæbnet med den nyeste teknologi bliver I kastet ud i et scenarie, der viser, hvad I […]

Tips